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Abstract. We present a theoretical study of the electron states in a quantum well with finite barrier
height in a magnetic field applied parallel to the quantum well. For large electron mass mismatch
between the quantum well and the barrier, we found the surprising result that the electron energy
for zero wave vector decreases with decreasing well width and the energy spectrum has a local
minimum at a non-zero wave vector. The influence of well depth, mass ratio and magnetic field
are investigated.

1. Introduction

Electrons confined by a square well (taken in thez-direction) form a quasi-two-dimensional
electron gas. When subjected to an in-plane magnetic fieldEB = By Eey the electrons moving in
thex-direction are decelerated or accelerated by the combined effect of the crossed fieldsBy
andEz = −dVconf (z)/dz, while the electron motion in they-direction is not altered. A great
deal of theoretical work has already been done on such systems [1–8], but up to now the mass
mismatch between electrons in the well and the barrier was neglected or taken to be relatively
small.

It is well known that the mass ratio of charge carriers between the barrier (mb) and
quantum well (mw) mass has an influence on the bottom of the energy spectrumE(kx) in
the quantum well. In reference [9] Bastard found that this energy decreases with increasing
mass ratioµ = mw/mb for fixed quantum well width. Increasing the mass ratio leads to a
decreasing penetration of the envelope function into the barrier. Consequently, the modulus of
the derivative of the wave function at the edges inside the well becomes smaller and smaller
to comply with continuity ofm−1(z) ∂ψ/∂z at the interface. Consequently, in the limit of an
infinite mass ratio the only possible wave function for the ground state is constant in the well
and zero in the barrier and thus the energy of the ground stateE0 becomes zero.

Here we find another effect which is very surprising (in fact it is counter-intuitive) but is
related to the observation of Bastard: for a sufficiently large mass ratio,En(kx = 0) decreases
with decreasing quantum well width if the well is not too narrow and this decrease is more
pronounced with decreasing height of the potential barrier, increasing magnetic field and
increasing mass ratio. A consequence of this effect is that the energy spectrum of charge
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carriers in parallel magnetic fields exhibits a local minimum atkx 6= 0. Previously, local
minima in the energy spectrum fork 6= 0 were found but they all arise from other causes.

It is known that the spin–orbit interaction present in the Hamiltonian will also lead to such
a minimum in the dispersion curve at finite momentum [10] but since this effect is a function
of the total magnetic field it can be distinguished from our effect by tilting the magnetic field
out of the plane. The present effect would then decrease while the spin–orbit effect would be
independent of the tilt angle.

Smřcka and Jungwirth [3] investigated the single-layer/bilayer transition of electrons in
AlGaAs/GaAs/AlGaAs wells subject to an in-plane magnetic field. This system is doped which
leads to bending of the potential by electronic forces and the system can no longer be described
by a square well. Instead there is a soft built-in barrier formed which has approximately an
inverted parabolic shape. Self-consistent calculations led them to the observation of a local
minimum inEn(k) at k 6= 0 which is the result of the non-square well used, and not of the
mass mismatch since this effect has been totally neglected.

Ibrahim and Peeters [11] investigated two-dimensional electrons in lateral magnetic super-
lattices. Their system is one in which a ferromagnetic film is deposited on a heterostructure
and patterned such that the magnetic domains consist of parallel strips with the magnetization
perpendicular to the thin film and which changes sign from one strip to the next. They used
several different models to describe the properties of such a system, but they all led to a
dispersion relation with a minimum at non-zero wave vector. This behaviour is due to the
specific form of the magnetic field and is not due to a mass mismatch.

To our knowledge there have been no calculations or experiments so far that show the
above-mentioned peculiar behaviour as a result of a mass mismatch. Here we investigate the
influence of several physical parameters, i.e. well depth, well width, magnetic field strength
and mass ratio, on the behaviour of the dispersion relation. Furthermore, we investigate the
expectation values of the potential and kinetic energy, in order to explain the peculiar behaviour.

This paper is organized as follows. In section 2 we derive the Schrödinger equation of our
system, which is a quantum well with a magnetic field applied parallel to the interfaces and
where a mass mismatch between the electrons in the barrier and in the well is included. We
also indicate which numerical technique we have used to solve this differential equation. In
section 3 we present our numerical results and study the dependence of the energy spectrum on
the well width and height, the mass mismatch and the magnetic field strength. Our conclusions
are presented in section 4.

2. Theoretical model

We consider a quantum well embedded in a barrier material with a magnetic field applied
parallel to the surfaces of the well, taken to be the(x, y) plane, i.e.EB = By Eey . The Hamiltonian
then becomes

H = 1

2m

(
Ep +

e

c
EA
)2

+ V (z)

whereV (z) is the electronic confinement potential. We choose the vector potential in the
Landau gauge,EA = (Byz, 0, 0), which results in the Schrödinger equation[

1

2m
(p2

y + p2
z ) +

1

2m

(
px +

e

c
Byz

)2

+ V (z)− E

]
ψ(x, y, z) = 0. (1)
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Sincepy andpz commute withH we can write

ψ(x, y, z) = 1√
S

eikxxeikyyϕn,kx (z) (2)

and the Schr̈odinger equation becomes[
− h̄2

2m

d2

dz2
+

1

2m

(
h̄kx +

e

c
Byz

)2

+ V (z)

]
ϕn,kx (z) =

(
E +

h̄2

2m
k2
y

)
ϕn,kx (z). (3)

When we take into account the different masses for the electrons in each layer, i.e.m = m(z),
the above equation has to be modified into [9][
− h̄

2

2

d

dz

1

m(z)

d

dz
+

1

2m(z)

(
h̄kx +

e

c
Byz

)2

+ V (z)

]
ϕn,kx (z) = En(kx, ky)ϕn,kx (z) (4)

where the energy isEn(kx, ky) = En(kx) + h̄2k2
y/2m

∗ and the mass is:m(z) = mb for
|z| > W/2 (barrier);m(z) = mw for |z| < W/2 (well) and the potential is:V (z) = V0 =
Ec,(barrier) − Ec,(well) for |z| > W/2 (barrier);V (z) = 0 for |z| < W/2 (well). We also define
the mass ratioµ = mb/mw, the electron effective massm∗ = 1/〈1/µ(z)〉 (i.e. the average mass
for electrons that can partially penetrate the barrier), the well widthW and the conduction band
energies in the barrierEc,(barrier) and in the wellEc,(well). The magnetic lengthlB = √

h̄c/eBy

is used as the unit of length andE∗ = h̄2/2mwl2B = h̄ωc/2 (withωc = eBy/mwc the cyclotron
frequency for an electron in the well region) as the unit of energy. The differential equation (4)
can then be rewritten in a simpler form and the energyEn(kx) can then be found by solving
the following equation:{

− d

dz

1

µ(z)

d

dz
+
(z + kx)2

µ(z)
+ V (z)− En(kx)

}
ϕn,kx (z) = 0. (5)

Differential equation (5) was solved using different numerical techniques. In the first
approach we solved the differential equation in the well and barrier separately. In the well
the wave function consists of a linear combination of parabolic cylindrical functions (Weber
functions), while in the barrier the wave function is a decaying function. By matching the
function valueϕn,kx andϕ′

n,kx
/m∗ at the well edges we find the eigenenergiesE. This method

is very fast, and we found it to be accurate at high magnetic fields. Our second approach uses
the finite-step discretization technique as described in reference [12]. The wave function is
written as anN -dimensional vector and the differential equation is, within a finite-difference
scheme, cast into the set of linear equations

AΦ = EΦ (6)

with A anN × N tridiagonal symmetric matrix andΦ a vector of lengthN . Using standard
routines from the Eispack library we obtained theN lowest eigenvalues and eigenvectors. We
found that this approach works for all magnetic fields. The disadvantage of this method is that
it becomes slow if one requires high accuracy.

3. Numerical results

It is known that in parallel magnetic fields the dispersion relationE(kx) deviates from a
parabolic form. In the presence of a magnetic field the energy at lowkx-values can no longer
be described by a parabola: forkx near zero it is more flattened than in the absence of a
magnetic field. More surprising is that in the case of different masses for the carriers in the
barrier and the well the minimum of theE(kx) curve is shifted to non-zerokx . This can be
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clearly seen in figure 1, where we have plotted the dispersion relation for positivekx-values (E
is symmetric inkx) for µ = 20 (dotted curve) andµ = 1, i.e. no mass mismatch (full curve).

In the inset of figure 1 we show the corresponding envelope functions atkx = 0 and
at the minimumkx = kmin. When compared to the zero-field solutions, thekx-dependent
eigenfunctions are modified by the magnetic field in two different ways: (i) the centre of the
electron wave function〈z〉 is shifted corresponding to [13]

〈z〉n,kx
lB

= −kxlB +
1

2

dEn(kx)/E∗
dkxlB

(7)

and (ii) the width1 of the states will change according to

12
n,kx

= 〈z2〉n,kx − 〈z〉2
n,kx
. (8)

From the inset of figure 1 we notice that for largeµ (dotted curve) the centre of mass of the
wave function is shifted more away from the centre of the quantum well than for the case of
equal masses (full curve). Furthermore, we see that the wave function is wider when there is
a mass mismatch between barrier and well.

Figure 1. The energy dispersion relationE0(kx) for the ground-state energy in the presence (dotted
curve forµ = 20) and in the absence (full curve) of a mass mismatch between electrons in the
well and in the barrier. In the inset we show the electron wave function forkx = 0 andkx = kmin,
i.e. the wave vector where the dotted curve has its minimum. The dotted curve is forµ = 20 and
the full curve forµ = 1.

This is made more visible in figure 2: the dashed curve gives the linear expression−kxlB
which is the average position of the electron in the absence of a confinement potential and the
dotted (full) curve gives the calculated centre of mass forµ = 20 (µ = 1). Forkx → ∞ the
dotted and full curves would approach〈z〉0,kx / lB = − 1

2W/lB = −5 if the confinement were
infinitely high. The dotted curve lies systematically lower than the full one which shows that
in the case of a large mass ratio, the centre of the wave function is shifted more towards the
barrier than in the case of equal masses. The lower inset of figure 2 shows that for increasing
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Figure 2. The average position of the electron as a function of the wave vector is shown in the
absence of confinement (dashed curve) and for a quantum well with (dotted curve,µ = 20) and
without (full curve) mass mismatch. The dotted (full) curve of the lower inset gives the percentage
of the wave function in the barrier forµ = 20 (µ = 1). The dotted (full) curve of the upper inset
gives the width of the wave function forµ = 20 (µ = 1).

wave vector a larger percentage of the wave function is in the barrier whenµ = 20 (dotted
curve) than whenµ = 1 (full curve). The upper inset of figure 2 shows the width of the wave
function for increasing wave vector. For smallkx-values the dotted curve (µ = 20) lies above
the full one (µ = 1), and we notice the peculiar behaviour of the width of the wave function:
instead of being squeezed together, the wave function first becomes wider. For sufficiently
largekx-values the width decreases and for largekx the wave function is narrower whenµ is
larger.

We found also a striking well width dependence. In figure 3 we show the ground-state
energy at zero wave vector, i.e.E0(kx = 0, ky = 0), as a function of the well width for a fixed
magnetic field and a mass ratio ofµ = 1 (full curve) andµ = 20 (dotted curve). For large well
widths (>7W/lB) thekx = 0 state is centred in the middle of the well and the confinement
results predominantly from the magnetic field since the envelope function does not ‘feel’ the
barrier and consequently there is noµ-dependence. When we decrease the well width the
wave function starts entering the barrier and we expect the energy to increase. The dotted
curve shows instead the opposite behaviour: decreasing the well width decreases the energy.
This effect is a consequence of the mass mismatch as can be seen from the full curve in figure 3
where the mass mismatch is completely neglected and which shows that the energy always
increases with decreasing well width. A similar behaviour is seen for the energy minimum,
i.e.E0(kx = kmin, ky = 0) (dashed curve) whenµ = 20. A contour plot of the energy of
then = 0 state ink-space forµ = 20,W/lB = 8 andV0/E∗ = 10 is shown in the inset of
figure 3. The two local minima are clearly visible.

To investigate this special feature in more detail we look at its dependence on different
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Figure 3. The energy at zero wave vector, i.e.E0(kx = 0), as a function of the well width for
µ = 20 (dotted curve) andµ = 1 (full curve) and atkx = kmin (dashed curve) forµ = 20. The
inset shows a contour plot of the energy of the lowest state forµ = 20, i.e.E0(kx, ky)

important parameters:By (magnetic field),V0 (well depth) andµ (mass ratio). To show the
effect of changing the magnetic fieldBy , the ground-state dispersion curvesE0(kx) are plotted
in figure 4 for different values of the magnetic field. Changing the magnetic field will change
the unit of lengthlB and the unit of energyE∗ and therefore we have taken an InAs/GaSb
quantum well system with a well width of 40 nm, a well height of 950 meV and a mass
ratio ofµ = mGaSb/mInAs = 0.047/0.023 = 2.04. We notice that increasing the magnetic
field increases the effect of having the minimum atkx 6= 0. At By = 1 T the dispersion
curve has its minimum atkx = 0, but forB = 20 T it clearly has a minimum atkx different
from 0. Somewhere between these two values the behaviour of the dispersion curve changes
drastically. In the inset of figure 4 we show thekmin-value where the ground-state(n = 0) and
first-excited-state(n = 1) energiesEn(kmin) attain their minimum values. Notice that there is
a threshold value (7 T for the ground state and 9.75 T for the excited state) for which the special
behaviour in the energy starts to appear. For values under this threshold value the minimum
is atkx = 0, for values above the threshold value the minimalkx-value increases abruptly and
for higher magnetic fields it continues to increases linearly, i.e.kmin = a(By − b), with a a
scaling factor andb the extrapolated threshold value for the magnetic field which we find if
we extrapolate this linear behaviour tokmin = 0 (see the thin line in the inset of figure 4). For
the ground state we founda = 0.025 nm−1 T−1 andb = 5.88 T and for the first excited state
a = 0.023 nm−1 T−1 andb = 8.34 T.

Figure 5 shows the effect of changing the well depthV0. We notice again that there exists a
threshold value betweenV0/E∗ = 0 and 1.5 for the well depth that must be reached before the
energy shows a local minimum atkx 6= 0. For well depths under this value, there exists no local
minimum; the dispersion decreases monotonically. This is due to the fact that for such low
values of the well depth, the wave function is pushed outside the well for increasingkx-value.
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Figure 4. The dispersion curvesE0(kx) for the ground state for different magnetic fields varying
fromB = 1 T toB = 20 T in steps of 1 T. The inset shows the value of the wave vector where the
minimum in the energy dispersion relation occurs, i.e.kmin, as a function of the magnetic field for
the two lowest energy levels, i.e.n = 0 andn = 1. The thin lines are the linear fits to which these
curves converge at high magnetic fields.

Figure 5. The dispersion curves for the ground state for different well depths varying from
V0/E∗ = 0.0 to V0/E∗ = 1.5 in steps of 0.1. In the inset we showkmin versusV0/E∗ for
the two lowest energy levels.

For large enough wave vectors, the wave function is confined by the magnetic confinement and
does not ‘feel’ the electronic confinement. In the inset we show thekmin-value at which the
energyEn(kmin) attains its minimum value forn = 0 (ground state) andn = 1 (first excited
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state). For well depths between 0 and 0.7 (0 and 2) there exists no local minimum in the
ground-state (first-excited-state) energy while for deeper wells the local minimum is moved
to lowerkx-values.

Figure 6 shows the effect of changing the mass ratio between the barrier and the well. As
expected, the effect of havingkmin 6= 0 becomes larger when the mass in the barrier becomes
larger than in the well. From the inset we notice again that there exists a certain threshold
mass ratio that must be reached for the effect to appear. For a mass ratio under this threshold
the minimum is atkmin = 0; for larger mass mismatches the minimalkx-value increases faster
than a simple power law, but we were able to fit it to the following expression:

kmin = a exp

( −c
µ− b

)
with a = 1.48 (0.77)l−1

B a scaling factor,b = 1.17 (1.71) the threshold value for the mass
ratio andc = 1.23 (2.60) for the ground state (first excited state).

Figure 6. The dispersion curves for the ground state for different mass ratio varying fromµ = 1
toµ = 5 in steps of 0.5. In the inset we plottedkmin versusµ for the two lowest levels.

In order to find the physical origin of the local minimum in the dispersion relation we
investigated the behaviour of the different terms in the Hamiltonian. From equation (5) we
know that the system is described by the following Hamiltonian:

H = − d

dz

1

µ(z)

d

dz
+
(z + kx)2

µ(z)
+ V (z) (9)

and we will calculate the expectation values of each of the different terms in the Hamiltonian.
In figure 7 we plotted these three terms together with the total ground-state energy (full curve)
and compare the situation with (a) and without (b) mass mismatch at the well–barrier interface.
The dotted curve represents〈

− d

dz

1

µ(z)

d

dz

〉
which is the kinetic energy, the dashed curve represents〈(z + kx)2/µ(z)〉, the magnetic energy,
and the dash–dotted line gives〈V (z)〉, the contribution due to the barrier potential. From
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figure 7(a) (µ = 1) we notice that the total energy (full curve) is mainly composed of the
kinetic and magnetic energy, and although we have a local minimum in the magnetic term
at kxlB = 3.7, this does not result in a local minimum in the total energy. In the case of a
mass mismatch (figure 7(b) (µ = 20)) the kinetic term (dashed curve) is substantially lower
and exhibits a local minimum atkxlB = 3.6 and the local minimum in the magnetic energy
(dotted curve) is much more pronounced and is shifted to a largerkx-value, i.e.kxlB = 4.2.
The combined effect of these two terms leads to a local minimum in the total energy which
appears atkxlB = 3.7 which is between the positions of the local minima in the kinetic and
magnetic energy.

Figure 7. The expectation values of the different terms in the Hamiltonian (see equation (9)): the
total energyE0(kx) (full curve), the kinetic energy term〈(−d/dz)(1/µ(z)) d/dz〉 (dashed curve),
the magnetic energy term〈(z + kx)2/µ(z)〉 (dotted curve) and the potential energy〈V (z)〉 (dash–
dotted curve). We show the result (a) without mass mismatch (µ = 1) and (b) with a large mass
mismatch (µ = 20).

A simple physical picture can be given by noting that in the case of a mass mismatch, for
largerkx-values, electrons can penetrate more into the barrier (see the lower inset of figure 2)
where the electron mass is larger. As a consequence the potential energy will increase slightly
(see the dash–dotted curve in figure 7), but this is not enough to offset the decrease in the
kinetic and magnetic energy terms.

4. Conclusions

We investigated the system consisting of a quantum well, with a magnetic field applied in the
plane of the well layers. We have included the effect of mass mismatch between the barrier
and the well and found that this gives rise to a minimum in the dispersion relationEn(kx)

at non-zero wave vector. We have looked at the influence of several physical parameters,
i.e. magnetic field, well width, well depth and mass ratio, on the behaviour of the dispersion
relation. We observed that in an InAs/GaSb quantum well of width 40 nm, where the mass of
the electrons in the barrier is about twice the mass of the electrons in the well, the minimum
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in the dispersion relation occurs at a magnetic field of 7 T. To explain the peculiar behaviour
we have calculated the expectation values of the kinetic and potential energy, and found that
the effect is mainly due to a larger penetration of the wave function into the barrier which
decreases the kinetic and magnetic energy terms in the Hamiltonian.
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